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We investigateS the problem of selecting the °‘best’ one of k arbitrary
systems or olternat}ves.
systems. By ‘best,’ we mean that system which has the highest

probability of yielding the ‘most desirable’ of the k observations.
The term °‘most desirable’ is defined according to some criterion of
goodness determined by the experimenter.
can be formulated as a multinomial selection problem.

multinomial selection procedures are, in a sense, nonparametric

procedures.

given.

adapted for use in the simulation environment.
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qugider one opsgrv.tion $rox each o!_the k

We show that this problem

An up-to-date survey of such multinomial procedures is

Further, we describe how some of these procedures can be

Hence,
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1. Introduction

Consider k different competing populations (or systems or
slternatives, etc). A natural question to ask is: Which of these k
systems is ‘best?’ By °‘best’ system, we could informally mean, e.Q.

=that one of k inventory policies which naxi-izes.profit.

-that one of k scales which is the most precise, or

-that one of k computer systems which has the greatest avajilability.
Thus, ‘best’ can take on a variety of meanings depending on the
practical prablem at hand.

Denote the k populations (sources of observations) as
‘1"2"""&' respectively. Suppose we take independent vector-

observations (x‘.xz,....xk). where X, is from 'i' i=1,...4k. Further,

i
for i=1,...,k, denote

pi = P(Xi is the ‘most desirable’ of xi,xz.....xk).-
The term °‘most desirable’ must be defined according to some criterion
of goodness determined by the experimenter. Assume that nothing is
known beforehand concerning the values of the pi's. Obviously, that ‘i
associated with the largest of the pi's is the population which has
the highest probability of yielding the °“most desirable’ observation
(of those observations from the k-vector). In this paper, our goal
will be to find that ‘i associated with the largest of the pi's. We
refer to that “i as the ‘best’ population.

In order to motivate this definition, consider a simple example.

Let A and B be two (s,S) inventory policies. Profit is taken to be
the criterion of desirability. Suppose that

Profit from A = 1000 with probability 0.001
= 0O . - 0.999
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Frofit drom B = 0.999 with probability 1.

Clearly, E(Frofit from A) = 1 > 0.999 = E(Profit from B)§ .., A

gives the higher averege profit. However, P{(Profit drom B > Profit

$rom A) = 0.999; therefore, B gives the higher profit alsost all of

the tise. For this reason, the experimenter ﬁight Justifiably

consider policy B to be better than policy A.

Hence, it is wmeaningful to consider as °‘best’ the policy which

will most likely produce the ‘most desirable’ observation.

This goal of finding the °‘best’ population can be viewed as that

of $inding that cell of a k-nomial distribution with the largest

underlying probability. Suppose that we take one observation from

each of the k populations. Award a one (a “success’) to the li

corresponding to the ‘most desirable’ of these k observations (use

randomization if necessary.) Award a zero to the remaining k-1 li's.

Clearly, this is the same as taking an observation from a multinomial

distribution with cell probabilities PyvecooPye

Thus, the problem of finding the ‘best’ one of k arbitrary
populations can be formulated as a problem of finding that one

category of a k-nomial distribution with the highest underlying

‘success’ probability. This implies that any procedure which finds

the multinomial cell associated with the largest probability is a

nonparasetric procedure. Since most real-life systems do not follow

one of the ‘usual’ probability distributions, such nonparasetric

procedures are seen to be very useful. We group these nonparametric

procedures under the heading of aultinosial selection procedures.

Additional motivation for the above arguments can be found in

Bechhofer and Sobel (1938).

In Section 2 of this paper, we give a brief summary of the




o, pertinent notation and terminology. In Section 3, some of the
. existing selection procedures are presented. 6Gection 4 is concerned

; with applications to simulation.
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RO 2. Batkground

‘n” We now introduce notetion and terminology which will be useful
o for investigating the problem of finding the multinomial cell which

N has the largest cel) probability. Suppose that we take independent

:QI observations sequentially from a k-nomial distribution with cell
Wy

N probabilities P, sPoscccsPy P, 2 0, Zp. = 1, until some stopping
g- 1'72 K i - i

L}

A criterion (several of which will be given in the sequel)) is met. Most
5; of the procedures which we will study take observations (up to a
limit, perhaps) until one cell has °‘significantly more’ successes than
the other cells. In this case, the stopping criteria call for the

ﬁ termination of the procedures.

$; Denote “i.t as the number qf observations from cell i after t

multinomial observations (or ‘stages’) have been taken, i=1,....,k;}

ig t=1,2,... Further, denote Pr13 < P23 € eee € Pryy oS the ordered

;a p;'s and Xr13,t < ees € XrK3,¢ oS the ordered xi't's. Assume: ¢ hat we
’; have no a priori knowledge as to how the ptil" are paired with the
ﬁ% multinomial cells.

Eﬁ Our goal is to select as best that cell which is associated with
ij ptk]' the largest probability. 1§ the cell corresponding to Prka is
ér actually chosen, we say that a correct selection (CS) has been made.
s Also, it is desired that the probability of correct selection (PLCS))
Lﬁ be at least P’ whenever e'p[k-il < Prka® where {P',o*) is pre-

"

::Z‘.' specified by the user (with 1 < 8" < o and 1/k < P' < 1). Define

§§v R = (Eﬁe'ptk—ll < Pryy)- We call @ » the preference zone and ngﬁ
o the indifference-zone. [Multinomial procedures such as those to be
:\‘ considered below fall under the classification of so-called

T§: iﬁdiffcrcncc-zone selection procedures. Another rich family of

- selection procedures employs the so-called subset approach; this

% -
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approach will not be emphasized here. The reader should refer to
Gupta and Panchapakesan (1979) for material concerning the
indifference-zone and subset methodologies.)

We will consider the following configuration of p[iJ‘s as a

benchmark for comparison among procedures:

Pryy * e“pu]. f=1,... k-1 (SC)
T.eey Prea = (k=140™71, jet,... k-1 p.o. = 0" (k-1+6")"1. SC stands
il [k
for slippage configuration (with slippage factor 0’). For some
sampling procedures (cf: Bechhofer, Elmaghraby, and Morse (1959)),
this configuration of pti]’s minimizes the P(CS) over pelg®. In this
case, the SC is called the least-favorable contiguration (LFC).
Informally, the LFC can be viewed as a ‘worst case’ configuration
(given that ReRg¥). It is not known whether the SC is the LFC for all
of the multinomial procedures to be presented in the sequel. However,
this is a reasonable conjecture; we shall treat the SC as if it is
the LFC. Since we desire P(CS)} > " for all configurations gene*.
then (assuming the conjecture to be true) we can equivalently require
that P(CS:EFSC}QP’. Hence, it is meaningful to investigate the SC.
Another interesting configuration is the equal probability

configuration (EPC), where P, = 17k for all i. 0Of course, the term
‘correct selection’ is now meaningless; but the EPC is useful as
another benchmark in that we would expect such a configuration to
maximize a multinomial procedure’s expected sample size (i.e., the

expected number of multinomial observations needed before the
termination criterion is met). Denote the sample size for a procedure

P as SP. E(SP) is the expected sample size.
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4 ldeally, we wish to find & procedure which guarantees
G P(CS1p=SCIP" but whicth is also parsimonious with observations; that

3 is, E(SPIE?SC) and E(SPIgyEPC) should be ‘low.
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?ﬁﬁ 3. Eome Multinomiasl Procedures

3 ‘i

e In this section, we concentrate on indifference-zone procedures
f" for selecting the multinomial cell which has the largest probability.
1)

;\2 Recall that when using the indifference-zone approach, the

A

e experimenter must pre-specify two constants, p* and ", The

'%54 procedures to be discussed below insure that

o) ® -

e !

i P(CSi® Prk-13 < ptkl) 2P, (PR)

Sl . ,

‘f where PR stands for prodability requirement. For all of these

Zg procedures, we establish the following conventions:

o

;}- —All observations are independent multinomial observations.

N

' =T is defined to be the stage at which the procedure in question
;iE: terminates sampling. T may be a random variable.

1y

ﬁ%} -We will choose as best that cell corresponding to Xek1oT (using
el )

3' randomization if necessary).

Lo 3.1 A single-sample procedure

The first procedure we consider is that of Bechhofer, Elmaghraby,

and Morse (1959), denoted as PBEH'

Procedure PBEM=

1. Specify k, P., and 0’.
«, P, 0" is

2. Take NBEH observations, where NBEH = NBEH

to be found in the tables of BEM (1959). NBEH is the number of

multinomial observations which must be taken in order to satisfy
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Remarks 3.1t

1. Kesten and Morse (1959) prove that the SC is the LFC.
2. 1In PBEH' the number of observations we take is Tixed at

NBEH' For this reason, the procedure is said to be a

Tixed-sample or single-sample procedure.

Example J.1.1:
Suppose that k=3 and that we specify P'-0.75 and 9.=3.

Use the following table (abstracted from BEM (1959)) in order

to €¢ind NBEH'
" 1.1 1.5 2.0 3.0
NeeM

1 .355  .429 . 500 . 600
2 .355  .429 . 500 . 600
3 .362  .464 .563 . 696
4 .367  .484 .594 734
5 .370 .49 .617 .769
6 .374  .515 . 646 .804

Table 1 (for PBEH"
PCSik=3,p=LFC) for selected 6" and Ny .

Reading down the e*=3.0 column, we see that NBEH=5 is the
smallest value of NBEN which achieves the PR (Note that owing

to the discrete nature of the smultinomial distribution,

PeEn
overshoots slightly the desired P.-0.75.) Hence, 1f we take
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k S observations, the PR will be Queranteed.

|?

3 3.2 PBK' an improved version of PBEH

L)
Ly

;% By considering the ¢ollowing example, it becomes apparent that
;; PBEH is sometimes wasteful with observations.
N
E: Example 3.2.1:
<
?X Suppose that k=2, NBEH‘7' and 55““1.5"2,5).“'1)'
- Obviously, it is impossible to terminate sampling with x, Tgxz T
Iy ’ v
f; In other words, there is no chance for cell 2 to be chosen.
\"
Q? Since cell 1 is guaranteed to be the victor regardless of
the remaining two observations, we should stop sampling at T=5.,,

%
:$

” With this example in mind, we compare two procedures, the latter due
9

: to Bechhofer and Kulkarni (1983).
: L)

4
:7 Procedure PBEH=

i 1. Specify k and N,

>t
‘ﬂ 2. Take N observations.,,
[
f
)

‘ Procedure PBKa
oy 1. Specify k and N.
fg 2. Take observations until either
7 A. The stage t=N or
“ - . .
& B. 'tk),t a[k-l],t-ﬂ t (Stop sampling if the cell(s) with
& the second largest number of observations can only tie the
- cell corresponding to x s ®ven if the remaining N-t
W, t k J [ t

.............
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)

} Remarks 3.2:

\

‘ 1. Note that PBK is a sequential procedure.

¥, 2. It is clear that E(5, ICE(S, ).

k. BK BEM

;; 3. Bechhofer and Kulkarni show that P{(CS!P }=P{CSIP_. ).

k BEM BK
Thus, PBK preserves the P{CS) of the less parsimonious

procedure, PBEH' Hence, we can use the more efficient P

- BK
3 with no loss of P(CS).
2 Example 3.2.2:
5 Let k=3, P"=0.75, and €"=3. Then E(S )=N__ =5. It is
3 P BEM
X BEM

straightforward (but tedious) to show that E(SP 1=3.95

BK

in the LFC.II

g 3.3 A sequential procedure due to Ramey and Alam (1979)
A Procedure PRA:

1. Specify k, P', ©".

2. Take observations until either

A. xtk].t‘N or

B. 'tk],t-x[k-ll,t.r' where r and N are determined by k,

P.. and 0', and are to be found in tables for certain k, P’.

S - ]
¥ s & x» 21X

and 0. (NB: See Remarks belou.),l

)

Remarks 3.3:

s 20 2 £

1. Ramey and Alam's tables actually contain a number of errors;

A

y
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f&J the user s advised to consult Bechhofer and Goldsman (19B84a).
\fﬁ 2. The number of observations which PRA takes is bounded by
B

KN-k+1.

?

b 3. It is not known whether the 6C is the LFC for all k ¢or PRA'
:¢ but we will make the reasonable assumption that this is the
ﬁ case.

D,

R 4. r and N are determined in such a way that the PR is

fﬁ satisfied and E(SP Ip=LFC) is minimized over the (r,N)

RA

;? grid.

I

- S. PRA is not directly comparable to PBK‘ However, for most
2

p. choices of k, P’, and 0.. it seems that PRA requires fewer
7;: observations (on the average) than Pok-

<

- Example 3.3.1:

A Again, let k=3, P'=0.75, and 6"=3. We abstract a small

" portion of the necessary (corrected) tables for PRA from
%: Bechhofer and Goldsman (1984a).
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F o r N P(CS) E(S5)
.75 3.0 2 3 .796 3.68
75 2.4 2 5 .760 4.70
.75 2.0 4 5 <756 8.80

Jable 2 (for PRA):
P(CSik=3,p=LFC), E(Si.) for various P", @"

We see that if r=2 and N=3 are chosen, a P{(CS) of 0.796 will
be achieved in the conjectured LFC. The overshoot of the
P{CSip=LFC) (0.796 vs. P¥=0.75) is again due to the discrete
nature of the problem. Further, in this exaaple,

E(SP ip=LFC)=3.68 < 3.95=E(SP SgFLFC).//
RA BK

W
.
o

An unbounded sequential procedure, PBKS

Bechhofer, Kiefer, and Sobel (1968) give an unbounded (or

open) sequential procedure which satisfies the PR.

Procedure PBKS=

1. Specify k, P", 6".

2. Take observations until

k-1 x -X
z (1100, tkl,t "[il,t

< a-phHHet.
1=1

/

Remark 3.4:

1. BKS show that the SC is the LFC for this procedure.

h R PR B T R ‘-4"'.
B R ORI A TR R A XA
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R
[
aae Example 3.4.1:
a.ﬁ Let k=3, P.-0.75, 0'-3. Consulting the appropriste tables in
B
L Bechhofer and Boldsman (1984b), we immediately find that
R P(CSip=LFC) = 0.842 (.0004) and E(S ip=LFC) =
RO P
.9' | BKS
igﬁ 4.526 (.051). These results are Monte Carlo estimates
yn
obtained via simulation; the entries in parentheses are the
,
‘&ﬂ accompanying standard errors. The results are nearly exact,
1528
f?ﬁ as can be seen by the small standard errors. ,,
; 3.9 PBG' an improved version of PBKS
ad As in the above example, it turns out that PBKS frequently yields
el
{%; P(CS:EFLFC)>>P’. This extra P{CS) is at the cost of unnecessary
sgi observations. Therefore, Bechhofer and Goldsman (1984b) give a
‘ﬁ. procedure which decreases the attained P(CS) to a level slightly
Xy
{%‘ . greater than P', but which also saves observations.
e

- Procedure PBG‘

}qﬁ 1. Specify k, P’, e’.

e

A

Wﬂi 2. Take gbservations until either

ot k-1 x - .

i A. 5 ety Tkt DLt ¢ 1 p% et or

e -
age B. the stage t-NBG, where NBG is determined by k, P,

0'. and is to be found in Bechhofer and Goldsman's tables

q: ,. & L
b for certain values of k, P , 6 .
3
)
1 .
" Remarks 3.35:
I ‘
g )
*‘
! v ratg e et e trnt e L R N R TR S TS R AR PR R NC PR TR PRy N NN T T AT AN e
y" ,(.'."v" t“‘J':' :"f_'-‘j R K ) " R 1 ':‘ ."..‘:\v v\‘\ ‘ '-}'\\'\'{;‘\' *. " ‘.:‘.‘.\-'\ -,L‘}“'?‘\f'i A i Ly TR e
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1. NBG is chosen as the smallest upper bound on the total
number of observations such that the PK is satisfied.

2. Unlike PBKS' PBG is bounded.

3. It s not known whether the SC is the LFC $or this
procedure, but we so conjecture.

) 4, PBG is neither directly comparable to P

nor P For

BK RA®
many choices of k, P’. 0'. it seems that PBG requires fewer
5 observations (on the average) than Ppy+ The authors feel
that the user should consult the relevant tables when

designing an experiment.

Example 3.5.1:

Let k=3, P"=0.75, 6"=3. We now abstract a small portion

5 of the necessary tables for PES from Bechhofer and Goldsaan
&y (1984b).
!
K]
L
«
) )

P e NBB PL{CS) E(S)

«75 3.0 S - 757 3.48
'g 075 2-4 8 .760 5.59
‘ «75 2.0 13 . 751 8.18

« 75 1.6 32 « 752 17.80

Table 3 (for PBG“

P(CS!k=3,p=LFC}, E(Si.) for various P", "

: We see that we must choose NBG-S with the resulting
[

i -~ O . - ,
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X
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l
g |
A P(CSip=LFC)=0.757 and E(S Ip=LFC)=3.48.
P //
e BG
o S
D
R
53 3.6 ’Al' an augmented version of PBB
g‘ We now employ the same device which was used in PBK‘
)
)
Qé viz., we stop sampling when the cell in second place only
‘ has a chance to tie.
K3
Lo~
}Q Procedure an‘
- 1. Specify k, P*, o".
B
o 2. Take observations until
£
o k-1 x e
< A. Y aset Tkt UL 6%t or
i=1 _ _
.; B. thAlgNBB' where NBG is from PBB or
} G k3, t™tk-12,¢ = Nar7t-/y
I
. Remarks 3.6:

¢ 1. Clearly, E(SP ) g_E(SP ).

% Al BG
2. By reasoning similar to that given in Bechhofer and

? Kulkarni (1983), PLCSiPLy? = PLCSiP 2. That is, no P(CS) 3

is lost between the two procedures.

.

3. Tables for PA1 are currently being prepared. See

Remark 3.6.2 above for information concerning the P{CS).

Example 3.6.1:

Again, let k=3, P’-0.75, e"=3. Then NA!'S and P{CSip=LFC)=0.757

as before. Now, E(S Ip=LFC)=3.24 < J.48=E(S ip=LFC).
PA! PBG /7
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3.7 Genersl remarks

We have seen procedures which follow a poset of sorts in terms of

ig sampling efficiency. Pg. ., leads to the more efficient P

BE BX®

; Similarly, P leads to P which, in turn, leads to P

BKS BG A’
alone. We note that augmentations may be made to P A* but this makes

PRA stands

R

;: our search for the optimal combination of r, N, etc., intractable.
g
\
"
N Poem —2 Pk
‘..
X Peks —2> Pps —> Pay
L™
1 Pra
[}
. N
’; In lieu of work currently in progress, the authors recommend use of
"
g- PRQ or PA1 when these procedures are applicable to the situation at
0

hand.
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4. Applications and Augmentations in Simulation

We are now interested in the more general problem of determining
which of k arbitrary populations I‘....,lk. is the ‘best.’ Suppose X‘
is an independent observation from l‘, i=1,...4,k. Recall that we can
correspond each of the k l"s with & cell of a k-nomial distribution
with cell probabilities PyseccoPyo where
pi = P(Xi is the ‘most desirable’ of ’1""‘”&" Hence, the
multinomial procedures described in the last section are
nonparasetric. This fact is of tremendous importance for simulators

since the underlying distributions of the li‘s (i.e., k simulated

systems) are frequently unknown.
4.1 An example

Suppose that we wish to choose that one of k different (s,S)
inventory policies which will have the highest probability of yielding
the maximum profit for a small company. Here, profit is taken to be
the criterion of desirability. It is assumed that the €financial
affairs of the company are complicated enough such that an analytic
solution of this problem is not possible. Thus, it is necessary to
resort to the use of simulation and multinomial selection techniques.

For the sake of simplicity, suppose that k=3, P’=0.75. and e'-s.
That is, we must choose among three (s,S) policies; it is desired
that P((.':!B%pl:k:l 2 O’P[k-lj)' where P is the probability that the i-th

policy yields the highest profit in a given k-vector cobservation. We

will use procedure PAI'

We sisulate each of the three (s,S) policies (with different
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1 Pseudo-random number sequences) to obtain vector observations

!’.!2.... Let Y’ L = the profit from policy 5 on the t-th simulation
| ]

-

LY

=

y run, !t - ‘Yl.t'vz.t'VB.t)' t=1,...,7, where 7 is the stage of

L) sampling at which PA1 terminates. After the t-th stage of sampling is
8 completed, identify the policy which yields the highest profit among
pe.

2 (Yl.t'vz.t'vs.t)' 1f necessary, use randomization to break ties.

Increment the count in the corresponding multinomial cell by one.

Example: I¢ Y, = (356,422,297), then the highest
protit (for this vector observation) is realized by lz.

. Thus, the count x. = (xl.l’xZ,l'xS.l) = (0,1,0).

1 72

NIt

Take 3-vector simulated observations until P calls for the

Al
2 termination of sampling. Recall from Section 3.6 that PAl
'5 terminates when
B k=1 .
) 1. ¥ aseh IR, Tt < a-P"7P* (= 1/3) or
.S i=]
)
@ 2. t = NAl ( = 35) or

Se Xrka,t T *rk-13,¢ = Naptt ¢ = 50

-

RS,

In the table below, we continue the example. The first column

P

gives the sampling stage - i.e., the number of 3-vector observations

? which have been taken. In the next three columns, the 3-vectors of
. simulated data are given. These are followed by the corresponding
: multinomial cell x, ,°s.

4 i,t

b

!

§

s

T T b T

i
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g 1 356 422 297 ) 1 0

3 2 411 378 314 1 1 o

A A 374 393 380 1 2 o

N 4 368 374 378 ] 2 1

>

a_ At stage t = 4, PAI calls for procedure termination since

ﬁ; “tk),t - *[k—l).t = NAI = t. We choose policy two as ‘best,’ since
Q@ that is the policy corresponding to 133,777

“v

}6 4.2 Pseudo-observations

K

L5

J.!

K. We discuss an augmentation of PAI that eliminates populations
. which seem to be ‘inferior.’ The augmentation takes advantage of the
B .
:; possibility that in the course of sampling, some of the li's will have
&S

*n
LJ no chance of ‘winning’ (being chosen as °‘best’).

) For instance, in the example of Section 4.1,

hﬂ“
;f: Xy = (xl,S'x2,3'x3.3, = (1,2,0).

'.
ij Claim: Given that Xe = (1,2,0), it is impossible for

:g T5 to win (in this example).

o Proof:

\1} Case 1: If x, = (2,2,0), then only ¥, and ¥, can

;i win (since NAl = 35).

W Case 2: 1+ X = (1,3,0), then sampling tersinates

‘N k=1

i and ¥, wins (since § (176" “re3,tTIEE g o et
) i=}

7

j? Case 3: 1¥f X, = (1,2,1), then ¥, wins (since

"l:k:l.t - "tk-n.t = Nap = ¥y,
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Thus, in this example, it is pointless to sample Tro» '3 given

that x,. = (1,2,0).

S

With this example in mind, consider the ¢ollowing augmented
procedure, P.. which no longer takes observations from ﬂsl Suppose
that devrore the next vector observation is taken, a U(O,1) probability
die is rolled. Let the outcome of the roll be O<ull. Since the PR

.
must be satisfied, assume that (Ptll’pIZJ'pISJ, = (pyPs©® p), where
P = 1/(9'¢2>. That is, the underlying configuration of p"s is the SC
(the conjectured LFC). 1f u<p<1l, award a ‘success’ to multinomial
cell 3 (i.e., increment cell 3‘s count by one: x = X + 1)
3,4 3,3

nithout actually taking vector observation !‘. In this case, we have
generously awarded 13 a ‘free success,’ and we call this non-

observation a pseudo-observation. 1§ udp, define = (Y

Ya 1,4'Y2,4)- In
this case, we only sample from lt and '2’ Increment as usual the
count of the cell corresponding to the °‘more desirable’ of the two
observations. Take observations in this manner until any of the
stopping criteria from PAl are met (where the xi.t's are defined as
above).

With the example still in mind, let B be the event that we are
using procedure PAI' the underlying configuration of the pi's is the

SC, and 53-(1,2,0). Define C similarly except that PAI is to be

replaced by P'.

Claim: P{(CSiB) = P{CS!C).
Proof: Since we operate in the SC, Py = P Or e’p.

Case 1: 1If py = ©"p, then cell 3 is the correct cell

(since " > 1). However, it is clear that
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)
» P(CS!pS-e.p. B) = P(CS!pB-O.p, ©e=o.,
b .
A Case 2: Suppose P, = p. Then (p,.pP.,) = (p,6 p) Or
W 3 ‘ 2
Y
L (9.p.p>. Assume the former subcase. A similar argument
‘.
¥ will apply for the latter. Consider P, and a given
i J-vector observation. Then ls is awarded a
‘% (pseudo-)success with probability p. Further, ll1 is
v awarded a success w. p.
- PCTy will not get the success) x PC(N, will get the
"y success ! only ll and “2 are under consideration).
A .
= (1-p) x p/(p+® p) = p. Similarly,
d P(Il2 will get the success) = O.p. But these success
e
ﬁ; probabilities are exactly the same as those from Par*
-'--
Since the termination criteria for both procedures are
(<
é ~ . also identical, we have the result.
-) )
)
Goldsman and Schruben (1984) consider a more general
ﬁ version of P’.
- Procedure P,.:
1. Specify k, P",0".
’. FDF‘ t=1'2’.--
N
} 2. Let 1, = (i%x[k]'t T X5t 2Ny - B2
- (This is the set of ¥; ‘s that no longer have a |
?'.
? chance to win.)

AT A

3. For each ielt, allocate an interval of length

p of [0,1), where p=1/(k—1+e’). |

%

u

e 4. Roll a U(0,1) random number, u.

1

:: S. If u falls in an interval allocated for some jelt,

= increment the corresponding xj t by one (i.e., award

\ ' |
SNSRI, CR T O LN "“,".-3,‘-"‘.;'.‘ l‘ -,".';':‘_'{-‘.:; - ?_ SRR e Ry PE o '(’ W R LA ,{,.
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& 'pseudo-success’ to N,). Otherwise, take actual

J
observations from all l"s such that i!(l,....k)\lt.

Increment by one the x corresponding to the ‘most

i,t
desirable’ observation.

6. Yerminate the procedure (with the usual decision

rule) if any of the termination criteria for PA!

are satisfied. 7/

Remarks 4.2:
1. Goldsman and Schruben (1984) prove that

P(CS:P,,, p=LFC) = P(CSiP, , p=LFC).

AL’ A2°*

2. Clearly, E(SP ip=EPC) < E(SP
A2 Al

the number of stages (in which actual observations are

{p=EPC), where § is

taken) until termination. It seems likely that this
relationship also holds when p=LFC, but this has not yet
been proven.
3. Tables for PA2 are currently being prepared. See
Remarks 4.2.1 and 3.6.2 for information concerning P{CS).

4. The trick of taking pseudo-observations is particularly

suited for the simulation environment.

Example 4.2.1:
Again, let k=3, P '=0.75, 6"=3. Then P(CSip=LFC) =

0.757 as before, and E(SP {p=LFC) = 3.12

A2 7"

4.3 Correlation induction

Frequently, it is possible for the simulator to artificially
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induce (positive) correlation among the l"s. For instance, the
simple technique of common random humbers can be used (when
applicable). More complicated methods can also be implemented. It
stands to reason that as the correlation among the populations
increases, it becomes easier for the experimenter to distinguish which
of the populations is the °‘best.’

Consider the aforementioned selection procedures. Obviously, an
increase in ©" facilitates the distinction of the ‘best’ multinomial
cell. The following crude example jllustrates how positive

correlation induction can result in increased 0‘.

Example 4.3.1:
Suppose that k=2 and that Xi is distributed normally
with unknown mean B, and known, common variance 12,
i=1,2. 1f one observation is larger than another, the
first observation is taken to be the more desirable.
So, define Py = P(x1 > xz), Py = 1 - Py Suppose
that By > B3 s$0 we can let Py = Op and Py = p, where
® is some number > 1. Clearly, © = (1-p)/p. Finally,
define p = Corr(Xl,Xz) 2 0.

Now, P, = P(X . >X,,) = P(X_-X, > O)

1772 1 72
= P{txl—xz-(nl—uz)llo > -(ul-uz)lo),
where ¢ = ¥(202(1-p))
- 1-0(-(n1-u2)lv) = Q((ul-uz)lv).
where $(.) is the N(O,1) cdf

- epP- say, = 1-p.

PRI Ry
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Then Op = (1-p)/p = G(N/(1-¢()),

where 1 = (p Y/e.

17v2
Hence, ep/eo = oM/ (N ) IxTL(1-0(N"))/(3-(N))]I,
where ' = ny(1-p),
This quantity §is obviously > 1. Thus, Op > Oo. /7
Remark 4.3:

More details and examples are given in Goldsman and

Schruben (1984),
4.4 Population splitting

We remarked earlier that the LFC represents a ‘worst case’
configuration for genec. the preference zone. 0f course, such a worst
case is rarely encountered in practice. If, in a simulation study,
gene!. then it is likely that p is not in the slippage configuration.
Perhaps it is possible to take advantage of this likelihood. A
generalization of taking pseudo-observations is proposed which avoids
taking observations from Ii’s which seem to be ‘inferior’ to other
populations. Indeed, in the course of sampling, we partition the Ii’s
into a ‘'good’ set 6 and a ‘bad’ set B. The populations in 6 receive
real observations while those in B receive only pseudo—-observations.
1¥ certain populations in 6 do not garner many successes during
sampling, it is possible to exchange them with populations ¢from B.
This possibility of exchange gives all of the k populations a chance
to win while discouraging actual sampling from ‘bad’ li's.

The sampling procedure we consider below is almost purely

heuristic. To facilitate the discussion, we consider directly
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sampling from & k-nomial distribution.

Procedure Pst

1. Specity k,P.. 9.. "o (some initial number of k-nomial
observations).

2. Take n, observatjions.

3. Fartition cells 1,...,k into ‘good’ cells 6 and ‘bad’
cells B. Suggestion: Place the cells with > the median
number of successes (either real or pseudo) into G; put
the others in B.

4. Temporarily be conservative and assume that the °‘bpest’
cell is in B. In the LFC, this cell will have probability
o"p; P(B) = (B! -~ 1)p + ©"p. With probability P{(B),
award a pseudo-success to a random cell in B. 1f a
pseudo-success is not awarded to a cell in B, take a real
multinomial observation from the cells in 6 (i.e., take
observations only from Ii's corresponding to cells in 6).
S. If any of the termination criteria from a previously
discussed multinomial procedu;e (which must be pre-
specified) are met, stop sampling and choose as best that

cell corresponding to Xek3.T° Otherwise, go to 3. /7
9

Remarks 4.4:
1. Admittedly heuristic, this procedure is intuitively
appealing.
2. Goldsman and Schruben (1984) give more details and some
limited computer simulations relevant to this procedure.

Caveat: very little work has been done to date.
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3. We fee) that this procedure wil) work well for large

k and P' and for small 0..

it

? -

[evwnraey
pCI el 2y
.'-‘l“ll

S

]
-

Ce30

o i
L5, 8,

e
o ¥ o

AR e 2

o

- oA \TEY LY ALG 2SI 300G
WA A b * ') JERTBIR R G b ey i

S N -
Ny T XPNT > ™ ' rer
"'?'vak&."r“,htl‘f*,!',‘;'!‘:‘ti RO YO I ’.n !"'..l (Wi, :IA S0 3 r



Wk

2ty 5

Tl

B A ALK

S. Summary

In this expository paper, we have introduced the reader to the
problem of selecting the multinomial cell with the largest underlying
pfobab!lity. A brief review of some of the existing multinomial
selection procedures was given. The superjor procedures appear to be
PRA and PAI' We also argued that these multinomial procedures could
actually be viewed as nonparametric procedures; thus, they should be
attractive to simulators. Various augmentations for use in the
simulation environment were presented. This interesting problem
remains an active area of research from the points of view of both

statistics and simulation.

Acknowledgement: We thank Prof. Robert E. Bechhofer of Cornell

for his many comments and suggestions.
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